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Abstract
We analyze the zero energy solutions, of a two-dimensional system which
undergoes a non-radial symmetric, complex potential V (r, φ). By virtue
of the coherent states concept, the localized states are constructed, and the
consequences of the imaginary part of the potential are found both analytically
and schematically.

PACS numbers: 03.65.Ta, 03.65.Ge, 03.67.Lx, 03.65.−w

1. Introduction

Since the early years of quantum mechanics the exact solvability of quantum mechanical
models have attracted much attention. Some exactly solvable models have already become
typical standard examples in quantum mechanical textbooks. However, it was believed
that the reality of the spectra of the Hamiltonians, describing quantum mechanical models,
is necessarily attributed to their Hermiticity. It was the non-Hermitian PT -symmetric
Hamiltonians proposed by Bender and Boettcher [1] that relaxed the Hermiticity condition as a
necessity for the reality of the spectrum [1–7]. Herein, P denotes the parity (PxP = −x) and
the anti-linear operator T mimics the time reflection (T iT = −i). Recently, Mostafazadeh
[8] has introduced a broader class of non-Hermitian pseudo-Hermitian Hamiltonians
(a generalization of PT -symmetric, therefore). In these settings [8–19], a Hamiltonian H
is pseudo-Hermitian if it obeys the similarity transformation: ηHη−1 = H † where η is a
Hermitian invertible linear operator. On the other hand, the study of the E = 0 bound
states have found many applications in various fields [20–24]. Long ago, Daboul and Nieto
[25, 26] had discovered that, an attractive radial power low potential, V (r) ∼ r−ν for ν < −2
and ν > 2, passes through the E = 0 normalizable solutions. More recently Makowski and
Górska established the classical correspondence localized states of a system with zero energy
and a general form of power low potentials [27]. In their work, it was shown that the classical
trajectories of the particle precisely matched with the localized quantum states.
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In this work, we attempt to understand the consequences of adding an imaginary term to a
potential whose zero energy level passes through the E = 0 normalizable bound state solution
(namely V (r) = −�r−4). We believe that this kind of study is necessary, to find relations, if
any between the non-Hermitian quantum mechanics and the classical mechanics.

This paper is organized as follows: in section (2), we give an analytical solution to the
Schrödinger equation of a zero energy particle under our chosen complex potential. We
continue in section (3) by adapting a closed form of the localized states from literature and
then we set up and plot the classically equivalent coherent states of the system. We conclude
our paper with section (4).

2. Analytic solution of the Schrödinger equation

Two-dimensional Schrödinger equation for a zero energy particle under a complex, non-radial
symmetric potential is given by[

− �
2

2m

(
1

r

∂

∂r

(
r

∂

∂r

)
+

1

r2

∂2

∂φ2

)
+ V (r, φ)

]
ψ (r, φ) = 0, (1)

where

V (r, φ) = − �

r4
− �

r2
eiφ (2)

and for our purpose, � and � are some non-negative real constants. Before we go further,
finding out the symmetric properties of V (r, φ) and consequently the Hamiltonian of the system
may give some connections between this potential and the well known PT -symmetric-type
potentials which are studied in the literature.

Let us introduce an operator � which is defined as

� : i → −i, φ → 2π − φ (3)

in which i = √−1 and φ is the usual azimuthal angle. One can easily show that � is a
non-Hermitian, invertible operator whose inverse is given by

�−1 = � (4)

and it can be decomposed into the two other operators T and 
 such that

� = 
T (5)

in which the definition of these operators are given by


 : φ → 2π − φ T : i → −i. (6)


 is Hermitian and invertible such that 
−1 = 
 = 
†, and T is the usual time reversal
operator. It is remarkable to observe that the Hamiltonian of the particle under the potential
(2) is 
T -symmetric which means

H = H
T . (7)

Also it is said [30] that the 
T -symmetry of a Hamiltonian H is unbroken if all of the
eigenfunctions of H are simultaneously eigenfunctions of 
T . It is easy to show that if the

T -symmetry of a Hamiltonian H is unbroken, then the spectrum of H is real (to see
the proof, one may see [30]).

We come back to equation (1) and as usual; we take

ψ(r, φ) = R(r)�(φ) (8)
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and after making substitution, into equation (1) we obtain a set of two equations as[
1

r

∂

∂r

(
r

∂

∂r

)
− l2

r2
+

2m�

�2r4

]
R (r) = 0 (9)

and

∂2�(φ)

∂φ2
+

2m�

�2
eiφ�(φ) = −l2�(φ), (10)

where l is a constant to be identified.
By introducing a new dimensionless variable ρ as

ρ = r

a◦
(11)

where a◦ is a positive constant, equations (9) and (10) become[
1

ρ

d

dρ

(
ρ

d

dρ

)
− l2

ρ2
+

γ 2

ρ4

]
R (r) = 0 (12)

and

d2�(φ)

dφ2
+ λ2 eiφ� (φ) = −l2�(φ) (13)

in which

γ 2 = 2m�

�2a2◦
(14)

and

λ2 = 2m�

�2
. (15)

In the angular part of the Schrödinger equation we change the variable, and introduce

χ = eiφ (16)

hence equation (13) reads

χ2 d2�(χ)

dχ2
+ χ

d�(χ)

dχ
− (l2 + λ2χ)�(χ) = 0. (17)

This is the modified Bessel ODE, such that its complete solution is well known as

�(χ) = C1I2l (2λ
√

χ) + C2K2l (2λ
√

χ)

or

�(φ) = C1I2l (2λ eiφ/2) + C2K2l (2λ eiφ/2) (18)

in which Iν(z) and Kν(z) are the modified Bessel functions.
This solution should satisfy the following boundary condition

�(φ) = �(φ + 2π) (19)

or equivalently

C1I2l (2λ eiφ/2) + C2K2l (2λ eiφ/2)

= C1I2l (2λ ei(φ+2π)/2) + C2K2l (2λ ei(φ+2π)/2). (20)

Since Iν(z) and Kν(z) are two independent solutions of the modified Bessel ODE , a class
of solution is possible when we put C2 = 0. Therefore we obtain

I2l (2λ eiφ/2) = I2l (2λ ei(φ+2π)/2). (21)
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In accordance with the following property of the modified Bessel functions [28]

Iν(z emπ i) = emπνiIν(z) (22)

where z is a complex variable, m is an integer and ν is a real number, one can choose

z = 2λ eiφ/2 (23)

and m = 1 in equation (22) to obtain

I2l (z eiπ ) = ei2lπ I2l (z). (24)

This equality is valid for all z and l in their domains, but if one considers l to be an integer, we
will obtain

I2l (z eiπ ) = I2l (z) (25)

which is equivalent to equation (22). Therefore l is found to be an integer, i.e.,

l = 0,±1,±2, . . . (26)

Of course as a different possibility, one can choose C1 = 0 to find a different class of
solution but the following property [28]

Kν(z eimπ) = e−mπνiKν(z) − π i sin mνπ csc νπIν(z), (27)

it comes to our setting as

K2l (z eiπ ) = e−π2liK2l (z) − π i sin 2lπ csc νπI2l (z), (28)

which obviously does not admit any solution.
As a result, the solutions of the angular part of the Schrödinger equation can be written

explicitly as

�l(φ) = ClλI2l (2λ eiφ/2) l = 0, 1, 2, . . . (29)

where, since I−n(z) = In(z), we just consider l to be non-negative, and Clλ are the
normalization constants given by

Clλ =
√

1∫ 2π

0 |�l(φ)|2 dφ
=

√
1∫ 2π

0 |I2l (2λ eiφ/2)|2 dφ
. (30)

One may note that l still can be interpreted as the angular quantum number, since

〈L̂〉�l
= 〈�l| − i�

∂

∂φ
|�l〉

= 〈ClλI2l (2λ eiφ/2)| − i�
∂

∂φ
|ClλI2l (2λ eiφ/2)〉

= −i�|Clλ|2〈I2l (2λ eiφ/2)|i[λ eiφ/2I2l+1(2λ eiφ/2) + lI2l (2λ eiφ/2)]〉 = l�. (31)

The radial part of the Schrödinger equation can be considered as the Bessel ODE if one
defines

ξ = 1

ρ
(32)

and therefore equation (12) becomes

ξ 2 d2

dξ 2
R(ξ) + ξ

d

dξ
R(ξ) + (γ 2ξ 2 − l2)R(ξ) = 0 (33)

which admits a complete solution

Rlγ (ξ) = C1Jl(γ ξ) + C2Yl(γ ξ). (34)
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A physical, normalizable solution which for l > 1 corresponds to the bound state is given
by [25, 26]

Rlγ (ξ) = Nlγ Jl(γ ξ) l = 2, 3, . . . (35)

in which Nlγ are normalization constants given by

Nlγ = 2

a◦γ

√
(l + 1)!

(l − 2)!
. (36)

Now we are ready to write the complete solution of the Schrödinger equation (i.e.,
wavefunction), by using equations (29) and (35) as

ψl,γ,λ(r, φ) = Clλ

2

a◦γ

√
(l + 1)!

(l − 2)!
I2l (2λ eiφ/2)Jl

(γ a◦
r

)
. (37)

We note that, with l > 1, the only complex part of ψl,γ,λ(r, φ) is the modified Bessel
function. As a matter of fact, the effect of � (introduced in equation (3)) on ψl,γ,λ (r, φ) is
equivalent to the effect of � on I2l (2λ eiφ/2). Therefore, by using the expansion form of the
modified Bessel function, this equation can be written as

ψl,γ,λ (r, φ) = Clλ

2

a◦γ

√
(l + 1)!

(l − 2)!
Jl

(γ a◦
r

) ∞∑
s=0

λ2(s+l)

� (s + 2l + 1) s!
eiφ(s+l) (38)

in which, clearly this is invariant under � (i.e., �ψl,γ,λ (r, φ) = ψl,γ,λ (r, φ)).

2.1. A realized approach to the problem

In this section we will consider the following radial symmetric real potentials

V± (r) = − �

r4
± �

r2
, (39)

where � and � are some positive constants as before. One should note that the negative
branch of the above potential is same as the potential in equation (2) in an attractive form, and
the positive branch of it is same but in a repulsive form. The Schrödinger equation (1), after
the usual separation method and change of variable, with the potential (39) comes to a set of
two separated equations as[

1

ρ

d

dρ

(
ρ

d

dρ

)
− l̃2

ρ2
+

γ 2

ρ4

]
R (ρ) = 0 (40)

and
d2�(φ)

dφ2
= −l2�(φ) , (41)

where

l̃2 = l2 ± λ2

in which the positive (negative) sign is related to the + �
r2

(− �
r2

)
, and the other factors are

defined as before. One can easily show that the final solution of the Schrödinger equation with
the potentials (39) can be written as

ψl,γ,λ(r, φ) = 1√
2π

2

a◦γ

√
(l̃ + 1)!

(l̃ − 2)!
eilφJl̃

(
1

r

)
(42)

in which l̃ must be greater than 1 to have bound states. In what follows, we will use the closed
forms of the infinite number of degenerate wave functions (i.e., these states have same energy
equal to zero), presented in equations (37) and (42) to construct the classical correspondence
localized states.
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Figure 1. A plot of probability density |�N(r, φ)|2 for N = 7 (i.e., 2 � l � 9), θ◦ = 0,

A = 1, ε = 0 (i.e., the V (r, φ) is real) and λ = 0.0. This is the localized state corresponding
to the classical trajectory of a particle which experiences just the first term of the potential, i.e.
V (r, φ) = −�/r4 and therefore it is the reference plot.

Figure 2. A plot of probability density |�N(r, φ)|2 for N = 7 (i.e., 2 � l � 9), θ◦ = 0,

A = 1, λ = 0.1. Also (a), (b) and (c) are correspondence with V (r, φ) = V−, V+ and Vc ,
respectively.

3. Zero energy localized states

In [25–27] it was shown that the trajectory of a classical particle which experiences a real
potential in the form of the �-part of the potential considered in this work (2) (i.e., − �

r4 ) is
given by
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Figure 3. A plot of probability density |�N(r, φ)|2 for N = 7 (i.e., 2 � l � 9), θ◦ = 0,

A = 1, λ = 0.5. Also (a), (b) and (c) are correspondence with V (r, φ) = V−, V+ and Vc ,
respectively.

{
x = a

2 (1 + cos(φ − φ◦))

y = a
2 sin(φ − φ◦),

(43)

which represents a circle with radius a/2 (i.e., if one set φ◦ = 0, this becomes (x − a/2)2+y2 =
(a/2)2) such that

a =
√

2m�/L2 (44)

and L is the conserved angular momentum of the particle. We note that, the classical
correspondence localized state (see [27] and the references therein) of the potential (2) while
� → 0 must have probability peak in accordance with the classical trajectory (i.e., a circle
with radius a/2 as implied by equation (43) [27]). Our aim in the following is to see the
effect of the �-part of the potential (2) on the shape of the classical correspondence localized
states. To this end, first we find the localized states of the original potential (2) in a closed
analytical form, and then we follow similarly but for the case when the potential is in the forms
of equation (39).

An available method to derive the corresponding localized states by using the solutions of
the Schrödinger equation given in the previous sections is based on the concept of deformed
oscillator algebras [27, 29]. Therefore a suitable explicit form of the localized state over
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Figure 4. A plot of probability density |�N (r, φ)|2 for N = 7 (i.e., 2 � l � 9), θ◦ = 0,

A = 1, λ = 1. Also (a), (b) and (c) are correspondence with V (r, φ) = V−, V+ and Vc , respectively.

Figure 5. A plot of probability density |�N (r, φ)|2 for N = 7 (i.e., 2 � l � 9), θ◦ = 0,

A = 1, λ = 5. Also (a) and (b) are correspondence with V (r, φ) = V+ and Vc , respectively.

the infinite number of degenerate states (with E = 0) ψlγλ(r, φ) reads (see [27, 29] and the
references therein)

�N = 1√
2π(1 + |τ |2)N/2

N∑
k=0

(
N

k

)1/2

τ kψk,γ,λ(r, φ) (45)
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Figure 6. A plot of probability density |�N(r, φ)|2 for N = 7 (i.e., 2 � l � 9), θ◦ = 0,

A = 1, λ = 10. Also (a) and (b) are correspondence with V (r, φ) = V+ and Vc , respectively.

Figure 7. A plot of probability density |�N(r, φ)|2 for N = 7 (i.e., 2 � l � 9), θ◦ = 0,

A = 1, λ = 100.

in which k = l − 2 and τ = A eiθ◦ , where A and θ◦ are some real constants.

3.1. Results

The classical correspondence localized states of a particle undergoes the potentials (2) and
(38), by choosing N = 7 may be written as

�7 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

8
√

π

7∑
k=0

C(2+k)λ

√( 7
k

)
(k + 3)!

k!
I(4+2k)

(
2λ ei φ

2
)
J(2+k)

(
1

r

)
V = Vc

1

16π

7∑
k=0

√( 7
k

)
(l̃ + 1)!

(l̃ − 2)!
eilφJl̃

(
1

r

)
V = V±

(46)

in which γ a◦ and A are set to be one and for convenience Vc and V± refer to the potentials
(2) and (39), respectively. Within figures 1–7 some density plot of |�7|2 are given in terms
of different values of λ. In figure 1, we plot |�7|2 with λ = 0 (i.e., Vc = V± = − �

r4 ) and the
classical trajectory of the particle (this figure was reported in [27]). In figures 2–4, (a)–(c)
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Figure 8. A plot of |I2l (2λ1 cos( φ
2 ) + i2λ2 sin(

φ
2 ))|2 in terms of φ, for some different values of λ1

and λ2.

Figure 9. A plot of |I2l (2λ1 cos( φ
2 ) + i2λ2 sin(

φ
2 ))|2 in terms of φ, for some different values of λ1

and λ2.
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Figure 10. A plot of |I2l (2λ1 cos( φ
2 ) + i2λ2 sin(

φ
2 ))|2 in terms of φ, for some different values of

λ1 and λ2.

refer to the potentials V−, V+ and Vc, respectively. In figures 5 and 6, (a) refers to V+ and
(b) refers to Vc. Finally figure 7 refers to Vc.

3.2. Behavior of the complexified modified Bessel functions

In this section we give a short description of the behavior of the complexified modified Bessel
functions I2l (z) to explain why with V = Vc the plot of the probability density with large
values of λ are very localized around φ = 0. It is not difficult to see that, in the case of V = Vc

the �-part of the original potential (2) goes into the φ-part of the Schrödinger equation and
therefore the entire effect of this term appears in the φ-part of the wave function. Therefore
the contribution of ClλI2l (2λ eiφ/2) in the final form of the wave function, instead of the usual
φ-part in the wave functions (i.e., 1√

2π
eilφ) of the case of V = V± is the reason of the great

localization about small φ. Let us write

I2l (2λ eiφ/2) = I2l

(
2λ cos

(
φ

2

)
+ i2λ sin

(
φ

2

))
, (47)

which shows that the square root of the real (imaginary) part of the potential directly goes
through the real (imaginary) part of the argument of I2l (2λ eiφ/2). To see the behavior of
I2l (2λ eiφ/2) in terms of the real (imaginary) part of its argument we rewrite the last equation
as

I2l → I2l

(
2λ1 cos

(
φ

2

)
+ i2λ2 sin

(
φ

2

))
, (48)

which in the limit of λ1 = λ2 = λ turns out to be I2l (2λ eiφ/2). Figures 8–10 show that once
λ2 vanishes |I2l|2 does not change much, but once λ1 becomes zero, |I2l|2 decreases strongly.
Also once λ1 takes a larger value (it does not matter what is the value of λ2), |I2l|2 takes
much higher value close to φ = 0 or 2π. We conclude therefore that, the imaginary part of
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the argument of I2l (and imaginary part of the potential therefore) does not contribute much
in the localization of the |�7|2 around small φ. In contrast, the real part, and its φ-dependent
part (i.e., cos φ) causes such a great localization.

4. Conclusion

In conclusion, we concentrate ourselves and wish to comment on the figures. Figure 1 is
our reference figure, i.e., the classical correspondence localized state when the �-part of the
potential vanishes. Figures 2–4 clearly show that the effects of the �-part in the Vc and V+

cause a higher localization while in the V− we see a lower localization. It is remarkable to
observe that the magnitude of the effects (within these three cases) Vc is greater than others.
Figures 5 and 6 show that as λ takes a large value the radius of the localized state corresponding
to the V+ decreases while the φ distribution of the |�7|2 does not change. For the case of
potential Vc the radii of the localized states are fixed while the φ distribution of the probability
density |�7|2 is changed so that the particle seems to be localized more around φ = 0. In
figure 7 we see the effect of the �-part in the Vc as a great localization about φ = 0. Obviously
the figures imply that in the case of V = Vc, the particle is localized around φ = 0, which is a
direct consequence of the �-part of the potential. We note that, our approach to the problem is
in a closed analytical form, where all numerical results are based on the analytical solutions.
There is no need to comment that any other approach will definitely lack the advantages of an
exact analytical solution.
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